Today we’re going to look at the most common mistakes we see from beginners who are just starting to research and design their own solar system.

Our goal with this article is to prevent common headaches and (potentially costly) problems that stem from poor system design.

Sometimes, people are so eager to get started that they dive in headfirst. They research products, calculate a cost estimate, and start sketching panel layouts for their roof.

But solar system design is a lot more complex than it appears on the surface.

So when people try to design a system without doing the research, they sometimes make mistakes. Big, glaring, expensive mistakes.

I touched base with a few of my colleagues to brainstorm the most common solar mistakes and misconceptions people have when they first get in touch with us.

Here are the points that came up over and over again:

1. Confusing off-grid and grid-tie solar

Solar power allows you to generate your own energy, which means you won’t pay for power from the utility grid. People assume this means they will be “going off the grid,” but that’s not accurate.

In reality, most people are looking for a grid-tied solar system.

Here’s the distinction: your panels generate energy, but you need a way to store that energy for later use. If you have access to power lines, you can store the energy you generate in the utility grid. The utility company will credit you for extra power produced, and allow you to pull from the grid when you need it.

Off-grid properties have no access to power lines, so they need another method to store energy. That means off-grid systems need a battery bank to function. Batteries are expensive, but with no option to store power in the grid, they are mandatory for off-grid systems.

The bottom line is that saving money and being independent from the grid are mutually exclusive. Batteries eat into your ROI (return on investment), and grid-tied properties don’t need them.

You don’t need to go “off the grid” to get the benefits of solar power. If your property has access to power lines, grid-tied solar is the smartest option.

Why pay for batteries when the utility grid will take care of storage for you?

2. Improper system sizing

Sizing a solar system is more complex than it appears at face value.

If you’re just starting out with your research, you might think it’s as simple as looking at your latest energy bill, then buying enough panels to cover that usage.

But that would ignore factors like climate, panel orientation, shading, natural efficiency drop, and other things that impact the “true” output of your system.

That’s why we won’t sell complete systems to anyone until they’ve consulted with one of our in-house solar design techs.

During that conversation, we plan your system to account for the variables most people don’t think about. Some common ones are:

Efficiency

Panels have an efficiency rating, and they suffer a 0.5-1% efficiency drop every year. 20 years after you install it, your panels will be 10-20% less efficient. We design a bit of extra headroom into your system to account for the loss of efficiency.

Climate

Solar panels are tested in ideal conditions: an indoor factory with temperatures in the mid-70s. In the real world, your system can be exposed to much harsher conditions. High temperatures can reduce the amount of energy you generate.

Your location also dictates how many sun hours you get. The term “sun hours” doesn’t mean “how long the sun is in the sky.” It refers to the amount of time the sun is in the right position to generate peak energy. Most places get 4-6 sun hours per day, and the exact amount influences system sizing.

Voltage

Inverters and charge controllers have maximum and minimum voltage input windows. Panels and batteries have a voltage rating as well.

Your system needs to be designed at the right voltage based on the equipment being used and what it requires. We also account for things like temperature that can affect voltage and system performance.

If you don’t have the right voltage from your solar panels or battery bank, your system might not perform well or worse – you could damage expensive hardware.

Battery bank sizing

Mismatching your battery bank with your charging source is the most common issue when it comes to batteries, specifically with off-grid system sizing. Your array needs to supply enough power to keep the batteries charged, but not so much that they overcharge.

Too much current could damage your batteries from overcharging. On the other hand, undercharging your batteries can have an even worse effect.

Certain batteries need to be brought up to full charge on a regular basis. Leaving them at empty or partial charge for an extended period of time can cause the batteries to fail prematurely.

3. “Solar prevents power outages!”

You’re generating your own energy, so the lights should stay on during a power outage, right?

Unfortunately, that’s not the case with grid-tied solar systems. Although the power originates from your panels, it is still stored in the public utility grid.

When the grid power goes out, so does yours, because there’s no infrastructure to feed that power to your property.

The remedy for this is a grid-tied system with battery backup. When the power’s on, it functions like a normal grid-tied system. During an outage, a small backup battery bank kicks in to keep the lights on.

It costs a bit more, but the peace of mind is invaluable, especially if you live somewhere with extreme weather conditions or unreliable power from the grid.